Braided quantum symmetries of graph C*-algebras

Suvrajit Bhattacharjee

Faculty of Physics and Mathematics Charles University

March 28, 2022

joint work with Soumalya Joardar and Sutanu Roy

Outline of the talk

- Braided compact quantum groups definitions and examples
- ► Graph C*-algebras and their braided symmetries
- ► The braided free unitary quantum group
- Braided symmetries of the Cuntz algebra

Braided compact quantum groups - definitions and examples

Let $q \in \mathbb{C}^{\times}$ be a nonzero complex number.

Definition

Let A be the universal unital C*-algebra generated by α and γ subject to the following relations:

$$\alpha^* \alpha + \gamma^* \gamma = 1,$$

$$\alpha \alpha^* + |q|^2 \gamma^* \gamma = 1,$$

$$\gamma \gamma^* = \gamma^* \gamma,$$

$$\alpha \gamma = \bar{q} \gamma \alpha,$$

$$\alpha \gamma^* = q \gamma^* \alpha.$$
(1)

If q were real, then the algebra A is exactly the algebra $C(SU_q(2))$ of continuous functions on the quantum group $SU_q(2)$.

In this case, as is well-known, there is a unique unital *-homomorphism $\Delta:A\to A\otimes A$ such that

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma,
\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma,$$
(2)

which, moreover, is coassociative and satisfies cancellation. If q is not real, the right-hand side of (2) do not satisfy the relations (1); thus there is no morphism Δ satisfying (2).

Surprisingly, there is a monoidal structure \boxtimes_{ζ} depending on $\zeta=q/\bar{q}\in\mathbb{T}$ such that the right-hand side of (2) indeed satisfy the relations (1) if we replace \otimes by \boxtimes_{ζ} , implying the existence of a $\Delta:A\to A\boxtimes_{\zeta}A$:

$$\Delta(\alpha) = \alpha \boxtimes_{\zeta} \alpha - q \gamma^* \boxtimes_{\zeta} \gamma,
\Delta(\gamma) = \gamma \boxtimes_{\zeta} \alpha + \alpha^* \boxtimes_{\zeta} \gamma.$$
(3)

Braided tensor product can be defined for two G-C*-algebras, where G is a quasitriangular quantum group. In this talk, we shall restrict ourselves to the case where G is the circle group \mathbb{T} .

Definition

We define the category $\mathcal{C}_{\mathbb{T}}^*$ of \mathbb{T} -C*-algebras and \mathbb{T} -equivariant morphisms as follows. An object of $\mathcal{C}_{\mathbb{T}}^*$ is a pair (X, ρ^X) , where X is a unital C*-algebra and $\rho^X \in \operatorname{Mor}(X, X \otimes \mathsf{C}(\mathbb{T}))$ such that

1.
$$(\rho^X \otimes id_{\mathsf{C}(\mathbb{T})}) \circ \rho^X = (id_X \otimes \Delta_{\mathbb{T}}) \circ \rho^X;$$

2.
$$\rho^X(X)(1_X \otimes C(\mathbb{T})) = X \otimes C(\mathbb{T}).$$

Let (X, ρ^X) and (Y, ρ^Y) be two \mathbb{T} -C*-algebras. A morphism $\phi: (X, \rho^X) \to (Y, \rho^Y)$ in $\mathcal{C}^*_{\mathbb{T}}$ (or equivalently, a \mathbb{T} -equivariant morphism) is by definition a $\phi \in \operatorname{Mor}(X, Y)$ such that $\rho^Y \circ \phi = (\phi \otimes \operatorname{id}_{\mathsf{C}(\mathbb{T})}) \circ \rho^X$. We write $\operatorname{Mor}^{\mathbb{T}}(X, Y)$ for the set of morphisms between (X, ρ^X) and (Y, ρ^Y) in $\mathcal{C}^*_{\mathbb{T}}$.

Remark

A \mathbb{T} -C*-algebra X (with ρ^X understood) comes with an associated \mathbb{Z} -grading defined as follows. We call an element $x \in X$ homogeneous of degree $n \in \mathbb{Z}$ if $\rho^X(x) = x \otimes z^n$ and write $\deg(x) = n$. For each $n \in \mathbb{Z}$, we let X(n) denote the set consisting of homogeneous elements of degree n:

 $X(n) = \{x \in X \mid \deg(x) = n\}$. The collection $\{X(n)\}_{n \in \mathbb{Z}}$ enjoys the following:

- 1. for each $n \in \mathbb{Z}$, X(n) is a closed subspace of X;
- 2. for $m, n \in \mathbb{Z}$, $X(m)X(n) \subset X(m+n)$;
- 3. for each $n \in \mathbb{Z}$, $X(n)^* = X(-n)$;
- 4. the algebraic direct sum $\bigoplus_{n\in\mathbb{Z}}X(n)$ is norm-dense X.

Let (X, ρ^X) and (Y, ρ^Y) be two objects of $\mathcal{C}^*_{\mathbb{T}}$. Let $\zeta \in \mathbb{T}$ and let $\mathsf{C}(\mathbb{T}^2_\zeta)$ denote the universal unital C*-algebra generated by two unitaries U and V, subject to the relation $VU = \zeta UV$.

Lemma

There exist unique morphisms $\iota_1, \iota_2 \in \operatorname{Mor}(\mathsf{C}(\mathbb{T}), \mathsf{C}(\mathbb{T}^2_\zeta))$ such that $\iota_1(z) = U$ and $\iota_2(z) = V$.

Definition

We define $j_1 \in \operatorname{Mor}(X, X \otimes Y \otimes \operatorname{C}(\mathbb{T}^2_{\zeta}))$ and $j_2 \in \operatorname{Mor}(Y, X \otimes Y \otimes \operatorname{C}(\mathbb{T}^2_{\zeta}))$ as the composites

$$X \xrightarrow{\rho^X} X \otimes \mathsf{C}(\mathbb{T}) \xrightarrow{\mathsf{imbedding}} X \otimes Y \otimes \mathsf{C}(\mathbb{T}) \xrightarrow{\mathrm{id}_X \otimes \mathrm{id}_Y \otimes \iota_1} X \otimes Y \otimes \mathsf{C}(\mathbb{T}^2_\zeta),$$

and

$$Y \xrightarrow{\rho^Y} Y \otimes \mathsf{C}(\mathbb{T}) \xrightarrow{\mathsf{imbedding}} X \otimes Y \otimes \mathsf{C}(\mathbb{T}) \xrightarrow{\mathrm{id}_X \otimes \mathrm{id}_Y \otimes \iota_2} X \otimes Y \otimes \mathsf{C}(\mathbb{T}^2_\zeta),$$

respectively.

Thus, for $x \in X(k)$, $j_1(x) = x \otimes 1_Y \otimes U^k$ and for $y \in Y(I)$, $j_2(y) = 1_X \otimes y \otimes V^I$. It follows that for $x \in X(k)$ and $y \in Y(I)$,

$$j_2(y)j_1(x) = \zeta^{lk}j_1(x)j_2(y)$$
 (4)

and therefore $j_2(Y)j_1(X)=j_1(X)j_2(Y)$, implying that $j_1(X)j_2(Y)$ is a C*-algebra.

Definition

The braided tensor product $X \boxtimes_{\zeta} Y$ is defined to be the C*-algebra $j_1(X)j_2(Y)$, i.e., $X \boxtimes_{\zeta} Y := j_1(X)j_2(Y)$.

Lemma

There is a unique coaction $\rho^{X\boxtimes_{\zeta}Y}$ of $C(\mathbb{T})$ on $X\boxtimes_{\zeta}Y$ such that $j_1\in\operatorname{Mor}^{\mathbb{T}}(X,X\boxtimes_{\zeta}Y)$ and $j_2\in\operatorname{Mor}^{\mathbb{T}}(Y,X\boxtimes_{\zeta}Y)$.

Remark

At the algebraic level, if $x \in X(k)$ and $y \in Y(I)$ then $j_1(x)j_2(y) \in (X \boxtimes_{\zeta} Y)(k+I)$.

Lemma

Suppose we are given two \mathbb{T} -equivariant morphisms $\pi_1 \in \operatorname{Mor}^{\mathbb{T}}(X_1, Y_1)$ and $\pi_2 \in \operatorname{Mor}^{\mathbb{T}}(X_2, Y_2)$. Then there is a unique \mathbb{T} -equivariant morphism $\pi_1 \boxtimes_{\zeta} \pi_2 \in \operatorname{Mor}^{\mathbb{T}}(X_1 \boxtimes_{\zeta} X_2, Y_1 \boxtimes_{\zeta} Y_2)$ such that $(\pi_1 \boxtimes_{\zeta} \pi_2)(j_1(x_1)j_2(x_2)) = j_1(\pi_1(x_1))j_2(\pi_2(x_2))$, for $x_1 \in X_1$ and $x_2 \in X_2$.

Definition (Meyer+Roy+Woronowicz, 2016)

A braided compact quantum group (over \mathbb{T}) G is a triple $G=(\mathsf{C}(G),\rho^{\mathsf{C}(G)},\Delta_G)$, where $\mathsf{C}(G)$ is a unital C^* -algebra, $\rho^{\mathsf{C}(G)}$ is a $\mathsf{C}(\mathbb{T})$ -coaction on $\mathsf{C}(G)$ so that $(\mathsf{C}(G),\rho^{\mathsf{C}(G)})$ is an object of $\mathcal{C}_{\mathbb{T}}^*$, Δ_G is a \mathbb{T} -equivariant morphism $\Delta_G\in\mathrm{Mor}^{\mathbb{T}}(\mathsf{C}(G),\mathsf{C}(G)\boxtimes_{\zeta}\mathsf{C}(G))$ such that

- 1. $(\Delta_G \boxtimes_{\zeta} \operatorname{id}_{C(G)}) \circ \Delta_G = (\operatorname{id}_{C(G)} \boxtimes_{\zeta} \Delta_G) \circ \Delta_G$ (coassociativity);
- 2. $\Delta_G(C(G))j_2(C(G)) = \Delta_G(C(G))j_1(C(G)) = C(G) \boxtimes_{\zeta} C(G)$ (bisimplifiability).

Theorem (Kasprzak+Meyer+Roy+Woronowicz, 2016)

Let $q \in \mathbb{C}^{\times}$ and $\zeta = q/\bar{q}$. Recall the algebra A from above; it is the universal unital C*-algebra generated by α and γ subject to the following relations:

$$\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + |q|^2 \gamma^* \gamma = 1,$$

$$\gamma \gamma^* = \gamma^* \gamma, \quad \alpha \gamma = \bar{q} \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha.$$
(5)

Then the following hold.

- ► There is a unique \mathbb{T} -action $\rho: A \to A \otimes C(\mathbb{T})$ such that $\deg(\alpha) = 0$ and $\deg(\gamma) = 1$;
- ▶ there is a unique \mathbb{T} -equivariant unital *-homomorphism $\Delta: A \to A \boxtimes_{\mathcal{E}} A$ such that

$$\Delta(\alpha) = j_1(\alpha)j_2(\alpha) - qj_1(\gamma)^*j_2(\gamma),$$

$$\Delta(\gamma) = j_1(\gamma)j_2(\alpha) + j_1(\alpha)^*j_2(\gamma);$$

 \triangleright moreover, \triangle is coassociative and bisimplifiable.

contd.

Definition (Kasprzak+Meyer+Roy+Woronowicz, 2016)

The triple (A, ρ, Δ) constructed in the previous theorem is a braided compact quantum group, called the braided $SU_a(2)$.

Now, compact quantum groups naturally arise as quantum symmetries of various structures, to name a few:

- of discrete structures;
- of spectral triples;
- ▶ of C*-algebras equipped with orthogonal filtrations;
- of subfactors etc.

Question

Do braided compact quantum groups arise as some sort of "braided symmetries" of objects?

In [Roy, 2021], the author presented examples of braided compact quantum groups as braided symmetries in a precise sense of finite spaces.

Definition (Roy, 2021)

Let $G=(\mathsf{C}(G), \rho^{\mathsf{C}(G)}, \Delta_G)$ be a braided compact quantum group. An action of G (equivalently, a $\mathsf{C}(G)$ -coaction) on a \mathbb{T} -C*-algebra (B, ρ^B) is a \mathbb{T} -equivariant morphism $\eta^B \in \mathrm{Mor}^\mathbb{T}(B, B \boxtimes_\zeta \mathsf{C}(G))$ such that

- 1. $(\mathrm{id}_B \boxtimes_\zeta \Delta_G) \circ \eta^B = (\eta^B \boxtimes_\zeta \mathrm{id}_{\mathsf{C}(G)}) \circ \eta^B$ (coassociativity);
- 2. $\eta^B(B)j_2(C(G)) = B \boxtimes_{\zeta} C(G)$ (Podleś condition).

Definition (Roy, 2021)

Let (B, ρ^B) be a \mathbb{T} -C*-algebra equipped with a G-action $\eta^B \in \mathrm{Mor}^\mathbb{T}(B, B \boxtimes_\zeta \mathsf{C}(G))$, where $G = (\mathsf{C}(G), \rho^{\mathsf{C}(G)}, \Delta_G)$ is a braided compact quantum group. A \mathbb{T} -equivariant state $f : B \to \mathbb{C}$ on B is one that satisfies

• $(f \otimes \mathrm{id}_{\mathsf{C}(\mathbb{T})}) \rho^B(b) = f(b) 1_{\mathsf{C}(\mathbb{T})}$ for all $b \in B$.

Definition (contd.)

Such an $f:B \to \mathbb{C}$ is said to be preserved under the G-action η^B if

 $\blacktriangleright \ (f\boxtimes_{\zeta} \mathrm{id}_{\mathsf{C}(G)})\eta^B(b) = f(b)1_{\mathsf{C}(G)} \text{ for all } b\in B.$

Remark

We recall that $B \boxtimes_{\zeta} C(G)$ is defined as a sub-C*-algebra of $B \otimes C(G) \otimes C(\mathbb{T}^2_{\zeta})$ and clearly $f \otimes \operatorname{id}_{C(G)} \otimes \operatorname{id}_{C(\mathbb{T}^2_{\zeta})}$ is defined. We let $f \boxtimes_{\zeta} \operatorname{id}_{C(G)}$ to be the restriction of $f \otimes \operatorname{id}_{C(G)} \otimes \operatorname{id}_{C(\mathbb{T}^2_{\zeta})}$ to $B \boxtimes_{\zeta} C(G)$.

Definition (Roy, 2021)

A G-action $\eta^B \in \operatorname{Mor}^{\mathbb{T}}(B, B \boxtimes_{\zeta} \mathsf{C}(G))$ of G on a \mathbb{T} -C*-algebra (B, ρ^B) is said to be faithful if the *-algebra generated by $\{(f \boxtimes_{\zeta} \operatorname{id}_{\mathsf{C}(G)})\eta^B(B) \mid f : B \to \mathbb{C} \text{ a } \mathbb{T}\text{-equivariant state}\}$ is norm-dense in $\mathsf{C}(G)$.

Graph C*-algebras and their braided symmetries

Definition

Let $E=(E^0,E^1,r,s)$ be a directed graph. The graph C*-algebra C*(E) is the universal C*-algebra generated by families of projections $\{P_v\mid v\in E^0\}$ and partial isometries $\{S_e\mid e\in E^1\}$ subject to the following relations:

- 1. for $v, w \in E^0$, with $v \neq w$, $P_v P_w = 0$;
- 2. for $e, f \in E^1$, with $e \neq f$, $S_e^* S_f = 0$;
- 3. for $e \in E^1$, $S_e^* S_e = P_{r(e)}$;
- 4. for $e \in E^1$, $S_e S_e^* \le P_{s(e)}$;
- 5. for $v \in E^0$ regular, $P_v = \sum_{e \in s^{-1}(v)} S_e S_e^*$.

The C*-algebra C*(E) comes equipped with a \mathbb{T} -action, called the gauge action, such that $\deg(P_{\nu})=0$, for all $\nu\in E^0$ and $\deg(S_{e})=1$ for all $e\in E^1$.

Definition

Let E be a finite, directed graph without sinks, $\#(E^0)=m$, $\#(E^1)=n$ and $(d_1,\ldots,d_n)\in\mathbb{Z}^n$. The generalized gauge action is the \mathbb{T} -action on C^* -algebra $C^*(E)$ such that $\deg(P_v)=0$ for all $v\in E^0$ and $\deg(S_{e_j})=d_j,\ e_1,\ldots,e_n\in E^1$.

Notations

- Let E be a finite, directed graph without sinks. We denote the vertex matrix (the ij-th entry of which is the number of edges between the i-th and j-th vertices) by D and the spectral radius of the vertex matrix by $\rho(D)$.
- Let us denote the following condition by a (†)
 - $\rho(D)$ is an eigenvalue of D such that there is an eigenvector with all entries nonnegative (\dagger)

and refer to the graphs satisfying it as graphs satisfying condition (†).

We need the following facts from the theory of graph C^* -algebras.

Facts

- ▶ $C^*(E)$ is the closed linear span of $S_{\alpha}S_{\beta}^*$, where α, β are paths in E.
- Let E be a finite, directed graph without sinks satisfying condition (†). Then there is a state τ_E such that

$$au_{\mathcal{E}}(S_{\alpha}S_{\beta}^{*}) = \delta_{\alpha\beta} \frac{1}{\rho(D)^{|\alpha|}} \tau_{\mathcal{E}}(P_{r(\alpha)}).$$

Here $|\alpha|$ and $r(\alpha)$ are the length and the range of the path α , respectively. The symbol $\delta_{\alpha\beta}$ has the obvious meaning: it vanishes when the two paths α and β are different and takes value 1 when α coincides with β .

▶ The state τ_E is \mathbb{T} -equivariant for the generalized gauge action.

Let $E=(E^0,E^1,r,s)$ be a finite, directed graph without sinks and let $G=(\mathsf{C}(G),\rho^{\mathsf{C}(G)},\Delta_G)$ be a braided compact quantum group. A G-action $\eta\in \mathrm{Mor}^{\mathbb{T}}(\mathsf{C}^*(E),\mathsf{C}^*(E)\boxtimes_{\zeta}\mathsf{C}(G))$ is called linear if there exists $q=(q_{ij})_{1\leq i,j\leq n}\in M_n(\mathsf{C}(G))$ such that for $1\leq j\leq n$, we have $\eta(S_j)=\sum_{i=1}^n j_1(S_i)j_2(q_{ij})$.

Now we can finally define what we mean by braided quantum symmetries of a graph C^* -algebra.

Let $E = (E^0, E^1, r, s)$ be a finite, directed graph without sinks satisfying condition (†) and let τ_E be the state on $C^*(E)$, mentioned above. We define the category $C(E, \tau_E)$ as follows.

- 1. An object of $\mathcal{C}(E, \tau_E)$ is a pair (G, η) , where $G = (\mathsf{C}(G), \rho^{\mathsf{C}(G)}, \Delta_G)$ is a braided compact quantum group, and $\eta \in \mathrm{Mor}^{\mathbb{T}}(\mathsf{C}^*(E), \mathsf{C}^*(E) \boxtimes_{\zeta} \mathsf{C}(G))$ is a τ_E -preserving, linear faithful action of G on $\mathsf{C}^*(E)$.
- 2. Let (G_1, η_1) and (G_2, η_2) be two objects in $\mathcal{C}(E, \tau_E)$. A morphism $\phi: (G_1, \eta_1) \to (G_2, \eta_2)$ in $\mathcal{C}(E, \tau_E)$ is by definition a \mathbb{T} -equivariant Hopf *-homomorphism $\phi: \mathsf{C}(G_2) \to \mathsf{C}(G_1)$ such that $(\mathrm{id}_{\mathsf{C}^*(E)} \boxtimes_{\zeta} \phi) \circ \eta_2 = \eta_1$.

A terminal object in $\mathcal{C}(E, \tau_E)$ is called the braided quantum symmetry group of the graph C*-algebra C*(E) and denoted ($\operatorname{Aut}(\mathsf{C}^*(E)), \eta^E$).

Theorem (B+Joardar+Roy, 2022)

Let $E = (E^0, E^1, r, s)$ be a finite, directed graph without sinks that satisfies the condition (\dagger) . Then $(\operatorname{Aut}(C^*(E)), \eta^E)$ exists.

The braided free unitary quantum group

Definition (B+Joardar+Roy, 2022)

For an admissible $F \in GL(n,\mathbb{C})$, we define $C(U_{\zeta}^+(F))$ to be the universal unital C*-algebra with generators u_{ij} for $1 \leq i,j \leq n$ subject to the relations that make u and $F\overline{u}_{\zeta}F^{-1}$ unitaries, where $u=(u_{ij})_{1\leq i,j\leq n}$ and $\overline{u}_{\zeta}=(\zeta^{d_i(d_j-d_i)}u_{ij}^*)_{1\leq i,j\leq n}$.

Remarks

- ▶ It takes some time to say what an "admissible" *F* is and why only these *F* are considered.
- ▶ The d_i , i = 1, ..., n, appearing above comes with such an "admissible" F.
- ▶ The identity matrix $I_n \in GL(n, \mathbb{C})$ and in fact, any invertible diagonal matrix is admissible; moreover, these are the only matrices that will be needed to state our results.

Theorem (B+Joardar+Roy, 2022)

The following hold.

ightharpoonup There is a unique \mathbb{T} -action

$$\rho^{\mathsf{C}(\mathsf{U}_\zeta^+(F))}:\mathsf{C}(\mathsf{U}_\zeta^+(F))\to\mathsf{C}(\mathsf{U}_\zeta^+(F))\otimes\mathsf{C}(\mathbb{T})$$

such that $\deg(u_{ij}) = d_j - d_i$ for $1 \le i, j \le n$;

there is a unique unital *-homomorphism

$$\Delta_{\mathsf{U}_\zeta^+(F)}:\mathsf{C}(\mathsf{U}_\zeta^+(F))\to\mathsf{C}(\mathsf{U}_\zeta^+(F))\boxtimes_\zeta\mathsf{C}(\mathsf{U}_\zeta^+(F))$$

such that
$$\Delta_{\mathsf{U}^+_\zeta(F)}(u_{ij}) = \sum_{k=1}^n j_1(u_{ik}) j_2(u_{kj})$$
 for $1 \leq i,j \leq n$;

• furthermore, $\Delta_{\mathsf{U}^+_\zeta(F)}$ is \mathbb{T} -equivariant, coassociative and bisimplifiable.

The triple $(C(U_{\zeta}^+(F)), \rho^{C(U_{\zeta}^+(F))}, \Delta_{U_{\zeta}^+(F)})$, constructed in the previous theorem is a braided compact quantum group, called the braided free unitary quantum group, denoted $U_{\zeta}^+(F)$.

Notation

We write $\mathsf{U}_\zeta^+(n)$ instead of $\mathsf{U}_\zeta^+(\mathit{I}_n)$

Sketch of proof

of the main Theorem

The first step is to observe the following.

Proposition

Let $(G, \eta) \in \mathrm{Obj}(\mathcal{C}(E, \tau_E))$ be an object in the category $\mathcal{C}(E, \tau_E)$. Then the C*-algebra C(G) is a quotient of the C*-algebra C(U $_{\zeta}^+(F)$), for some diagonal F.

Definition

We now define another category $\mathcal{C}'(E)$ as follows. An object of $\mathcal{C}'(E)$ is a triple (X, ρ^X, η^X) which consists of

1. a \mathbb{T} -C*-algebra (X, ρ^X) generated by $\{t_{ij}\}_{1 \leq i,j \leq n}$ such that the two matrices

$$t = (t_{ij})_{1 \le i, j \le n}, \quad F\overline{t}_{\zeta}F^{-1} = (\zeta^{d_i(d_j - d_i)}F_{ii}t_{ij}^*F_{jj}^{-1})_{1 \le i, j \le n},$$

are unitaries.

Definition (contd.)

2. a \mathbb{T} -equivariant morphism $\eta^X \in \mathrm{Mor}^{\mathbb{T}}(\mathsf{C}^*(E), \mathsf{C}^*(E) \boxtimes_{\zeta} X)$ such that, for each $1 \leq j \leq n$, $\eta^X(S_j) = \sum_{i=1}^n j_1(S_i)j_2(t_{ij})$.

Let (X, ρ^X, η^X) and (Y, ρ^Y, η^Y) be two objects in the category $\mathcal{C}'(E)$. A morphism $\phi: (X, \rho^X, \eta^X) \to (Y, \rho^Y, \eta^Y)$ in $\mathcal{C}'(E)$ is by definition a \mathbb{T} -equivariant morphism $\phi: X \to Y$ such that $(\mathrm{id}_{\mathsf{C}^*(E)} \boxtimes_{\zeta} \phi) \circ \eta^X = \eta^Y$.

Lemma

An initial object in the category $\mathcal{C}'(E)$ exists, denoted $(\mathcal{U}, \rho^{\mathcal{U}}, \eta^{\mathcal{U}})$. The generators are written $[u_{ij}]$, with the \mathbb{T} -action such that $\deg([u_{ij}]) = d_j - d_i$. Finally, $\eta^{\mathcal{U}}$ is given by

$$\eta^{\mathcal{U}}(S_j) = \sum_{i=1}^n j_1(S_i) j_2([u_{ij}]), \quad 1 \leq j \leq n.$$

It turns out that $\mathcal U$ can be provided with more structures so as to make it a braided compact quantum group. The first step is to observe that $\mathcal U\boxtimes_\zeta\mathcal U$ can be made into an object of the category $\mathcal C'(E)$.

Lemma

The braided tensor product $\mathcal{U} \boxtimes_{\zeta} \mathcal{U}$ of \mathcal{U} with itself can be made into an object $(\mathcal{U} \boxtimes_{\zeta} \mathcal{U}, \rho^{\mathcal{U} \boxtimes_{\zeta} \mathcal{U}}, \eta^{\mathcal{U} \boxtimes_{\zeta} \mathcal{U}})$ of $\mathcal{C}'(E)$.

Corollary

There exists a unique \mathbb{T} -equivariant unital *-homomorphism $\Delta_{\mathcal{U}} \in \operatorname{Mor}^{\mathbb{T}}(\mathcal{U}, \mathcal{U} \boxtimes_{\zeta} \mathcal{U})$ such that

$$\Delta_{\mathcal{U}}([u_{ij}]) = \sum_{k=1}^{n} j_1([u_{ik}])j_2([u_{kj}]).$$

Furthermore, $\Delta_{\mathcal{U}}$ is coassociative and bisimplifiable.

Corollary

There exists a braided compact quantum group (over \mathbb{T}) G_E such that $(C(G_E), \rho^{C(G_E)}, \Delta_{G_E}) = (\mathcal{U}, \rho^{\mathcal{U}}, \Delta_{\mathcal{U}})$. Furthermore, G_E acts linearly, faithfully on $C^*(E)$ preserving τ_E via $\eta^{\mathcal{U}}$, denoted henceforth by η^{G_E} .

Theorem

$$(G_E,\eta^{G_E})\cong (\operatorname{Aut}(\mathsf{C}^*(E)),\eta^E).$$

Braided symmetries of the Cuntz algebra

We recall that the Cuntz algebra \mathcal{O}_n is the graph C*-algebra corresponding to the graph (denoted by $E_{\mathcal{O}_n}$) with a single vertex and n-loops at it. Explicitly, \mathcal{O}_n is the universal unital C*-algebra generated by S_i for $1 \leq i \leq n$ subject to the relations

$$S_i^* S_j = \delta_{ij} \quad (1 \le i, j \le n), \text{ and } S_1 S_1^* + \dots + S_n S_n^* = 1.$$

 \mathcal{O}_n is equipped with the generalized gauge action $\rho^{\mathcal{O}_n}: \mathcal{O}_n \to \mathcal{O}_n \otimes \mathsf{C}(\mathbb{T})$ given by $\deg(S_i) = d_i, \ 1 \leq i \leq n$, and $(d_1, \ldots, d_n) \in \mathbb{Z}^n$.

Proposition (B+Joardar+Roy, 2022)

There is a unique unital *-homomorphism $\eta: \mathcal{O}_n \to \mathcal{O}_n \boxtimes_{\zeta} \mathsf{C}(\mathsf{U}^+_{\zeta}(n))$ such that $\eta(S_j) = \sum_{i=1}^n j_1(S_i)j_2(u_{ij})$ for $1 \leq i,j \leq n$. Furthermore, η is \mathbb{T} -equivariant, coassociative and satisfies Podleś condition.

Theorem (B+Joardar+Roy, 2022)
$$(\operatorname{Aut}(\mathcal{O}_n), \eta^{\mathcal{O}_n}) \cong (\mathsf{U}^+_{\zeta}(n), \eta).$$

References

- Quantum group-twisted tensor products of C*-algebras. II,
 - R. Meyer, S. Roy, S.L. Woronowicz
 - J. Noncommut. Geom., 2016.
- Braided quantum SU(2) groups,
 - P. Kasprzak, R. Meyer, S. Roy, S.L. Woronowicz
 - J. Noncommut. Geom., 2016.
- Homogeneous quantum symmetries of finite spaces over the circle group,
 - S. Roy

https://arxiv.org/abs/2105.01556v2

Thank you!